

First Round 2022-2023

Grade 8

Problem №1.

Let $X = \frac{2019}{2018} + \frac{2018}{2019} + \frac{2019}{2020}$ and $Y = \frac{1}{2020} + \frac{1}{2019} - \frac{1}{2018}$. Which of the following equations is correct?

- A) X-Y=4

- B) X+Y=1 C) Y=X+4 D) X=4-Y E) None of preceding

Problem №2.

Let a, b and c are distinct prime numbers such that a(c - b) = 18 and b(c-a) = 40. Find a + b + c.

- A) 13
- B) 17

- C) 19 D) 21 E) None of preceding

Problem №3.

ABCD is a quadrilateral where AE and DE are angle bisectors. Find the value of m∠AED.

- $A) 60^{\circ}$
- B) 75°
- C) 90°
- D) 100°
- E) None of preceding

Problem Nº4.

If $5^2 + 5^3 + 5^4 + \ldots + 5^{20} = M$, then what is the value of $5^2 + 5^3 + 5^4 + \ldots + 5^{18}$?

Problem №5.

How many distinct isosceles triangles can be created with integer sides and perimeter of 200 units?

A) 49

B) 64

C) 81

D) 96

E) None of preceding

Problem №6.

For how many integers *n* is $|n^2 - 6n + 5|$ prime?

A) 1

B) 2

C) 3

D) 4

E) 5

Problem №7.

How many ways can you select three integers from 1 to 10 such that no two integers chosen are consecutive?

A) 30

B) 56

C) 120

D) 360

E) None of preceding

Problem №8.

Find the sum of all real solutions of the equation $(x-5)^{2x-6} = 1$.

A) 9

B) 10

C) 13

D) 15

E) None of the preceding

Problem №9.

Suppose \overline{xx} , \overline{yy} , \overline{zz} are two-digit whole numbers. If $x^2 + y^2 + z^2 = 74$ then find the number of positive divisors of $(xx)^2 + (yy)^2 + (zz)^2$.

A) 12

B) 13

C) 14

D) 15

E) 16

Problem №10.

Find the area of the right triangle ABC if a + b + c = 28 and $a^2 + b^2 + c^2 = 288$.

- A) 230
- B) 288
- C) 84
- D) 56
- E) 28

Problem №11.

Maria flips six fair coins. What is the probability that at least half one of the coins land heads?

- A) $\frac{10}{32}$ B) $\frac{1}{2}$ C) $\frac{41}{64}$ D) $\frac{21}{32}$ E) None of the preceding

Problem №12.

A rectangular box has integer edge lengths in the ratio 1: $\frac{3}{2}$: 2. Which of the following could be the volume of the box?

- A) 120
- B) 144
- C) 168
- D) 192
- E) 216

Problem №13.

The sum of the first 20 terms of an arithmetic sequence which has first term 1 is equal to the sum of the first 10 terms of an arithmetic sequence which has first term 10. If positive integers x and y are the respective common differences of the sequences, what is the minimum possible value of x + y?

- A) 35
- B) 38
- C) 40
- D) 43
- E) None of the preceding

Problem №14.

The number $N = 11111 \dots 111$ is formed by writing 105 ones in a row. What is the sum of the digits of the product $105 \times N$?

- A) 504
- B) 555
- C) 630
- D) 945
- E) 1105

Problem №15.

Eight chess players play in a round-robin tournament, where each player plays every other player exactly once. A win is worth 1 point for the winner and 0 point for the loser and a tie is worth 0.5 points for the both players. Given that seven of the players' cumulative scores were 0, 1, 2.5, 3, 3.5, 5 and 7 points, how many points did the eighth player score?

A) 3

B) 4

C) 5

D) 6

E) 7

arc-official.org Grade 8