

First Round 2022-2023

Grade 10

Problem №1.

If the function f satisfies $f\left(x-\frac{1}{x}\right)=x^2+\frac{1}{x^2}$ for every positive real x, what is the value of f(2)?

- A) $\frac{1}{2}$ B) $\frac{3}{2}$ C) 3 D) 4
- E) 6

Problem №2.

Start with 243. In each blank below, insert either $\times 3$ or $\div 9$ to create a true equation. How many different, true equations can be formed?

243

A) 5

- B) 12
- C) 35
- D) 128
- E) None of the preceding

Problem №3.

A parabola with equation $y = ax^2 + bx + c$ has vertex (h, k). How many of the six quantities a, b, c, h, k and $\Delta = b^2 - 4ac$ can be negative at the same time?

- A) Most 2
- B) At most 3
- C) At most 4
- D) At most 5
- E) All six

Problem №4.

An integer N has 10 positive divisors. If 2N has 15 positive divisors and 3N has 20 positive divisors, how many positive divisors does 4N have?

- A) 15
- B) 20
- C) 34
- D) 28
- E) 32

Problem №5.

Find the number of integer solutions to the following equation $(x^2 - 3x + 1)^{x+1} = 1$

Problem №6.

A) 0

What is the number of ordered pairs (x, y) of positive integers that satisfy the equation 2x + 3y = 120?

D) 3

- A) 19
- B) 24

B) 1 C) 2

- C) 29
- D) 36

E) 4

E) None of the preceding

Problem №7.

In triangle ABC, the medians BE and CD intersect at F and are perpendicular to each other. If BE = 18 and CD = 24, find the length AF.

- A) 15
- B) 20
- C) 25
- D) 30
- E) None of the preceding

Problem №8.

What is the maximum possible value of x + y for positive integers x and y that satisfies the following equation?

$$log_2(log_{2^x}(log_{2^y}2^{400})) = 0$$

- A) 53
- B) 102
- C) 201 D) 400
- E) None of the preceding

Problem №9.

Both FIZ and FIZZ are acceptable Scrabble words, though the version with two Z's is better known. How many six-letter strings formed only from the letters F, I, and Z will contain the word FIZ but not the word FIZZ?

- A) 64
- B) 72
- C) 80
- D) 96
- E) None of the preceding

Problem №10.

On a semicircle with diameter AB, two points C and D are taken such that BC=CD=2. If AB=6, find the value of 6AD.

A) 27

Problem №11.

Robert has a coin which lands heads with probability $\frac{2}{3}$ and tail with probability $\frac{1}{3}$.

He flips this coin three times. What is the probability that he obtains at least one tail?

B) 28

- A) $\frac{4}{9}$ B) $\frac{17}{27}$ C) $\frac{19}{27}$ D) $\frac{23}{27}$ E) $\frac{26}{27}$

Problem №12.

Square ABCD has side length 4. Points E, F, G and H are the midpoints of AB, BC, CD and DA respectively. What is the area of the shaded square?

- A) 2.4
- B) 3.2
- C) 3.6
- D) 4
- E) None of the preceding

Problem №13.

ABCD is a trapezoid with AD //BC, $AB \perp AD$, AB = 8, AD = 6 and DC = EC = 10. Find the area of *ABED*?

- A) 24
- B) 26
- C) 28
- D) 30
- E) 32

Problem №14.

Find the value of x for which $100^x \times 1000^{2x} = 10000^{10}$

- A) 3
- B) 4
- C) 5
- D) 6
- E) 7

Problem №15.

The cubic polynomial $x^3 + 9x^2 + 24x + 16$ has exactly two distinct real roots, both of which are integers. What is the sum of these two roots?

- A) -9
- B) -5
- C) 2
- D) 5
- E) 17